Please use this identifier to cite or link to this item: https://doi.org/10.1145/2502081.2502203
DC FieldValue
dc.titleUnderstanding and classifying image tweets
dc.contributor.authorChen, T.
dc.contributor.authorLu, D.
dc.contributor.authorKan, M.-Y.
dc.contributor.authorCui, P.
dc.date.accessioned2014-07-04T03:15:57Z
dc.date.available2014-07-04T03:15:57Z
dc.date.issued2013
dc.identifier.citationChen, T., Lu, D., Kan, M.-Y., Cui, P. (2013). Understanding and classifying image tweets. MM 2013 - Proceedings of the 2013 ACM Multimedia Conference : 781-784. ScholarBank@NUS Repository. https://doi.org/10.1145/2502081.2502203
dc.identifier.isbn9781450324045
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/78411
dc.description.abstractSocial media platforms now allow users to share images alongside their textual posts. These image tweets make up a fast-growing percentage of tweets, but have not been studied in depth unlike their text-only counterparts. We study a large corpus of image tweets in order to uncover what people post about and the correlation between the tweet's image and its text. We show that an important functional distinction is between visually-relevant and visually-irrelevant tweets, and that we can successfully build an automated classifier utilizing text, image and social context features to distinguish these two classes, obtaining a macro F1 of 70.5%. Copyright © 2013 ACM.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1145/2502081.2502203
dc.sourceScopus
dc.subjectAnalysis
dc.subjectClassification
dc.subjectImage tweets
dc.subjectMicroblog
dc.typeConference Paper
dc.contributor.departmentCOMPUTATIONAL SCIENCE
dc.description.doi10.1145/2502081.2502203
dc.description.sourcetitleMM 2013 - Proceedings of the 2013 ACM Multimedia Conference
dc.description.page781-784
dc.identifier.isiutNOT_IN_WOS
dc.relation.dataset10635/137404
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.