Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/78334
DC FieldValue
dc.titleScene character detection and recognition based on multiple hypotheses framework
dc.contributor.authorHuang, R.
dc.contributor.authorOba, S.
dc.contributor.authorPalaiahnakote, S.
dc.contributor.authorUchida, S.
dc.date.accessioned2014-07-04T03:15:06Z
dc.date.available2014-07-04T03:15:06Z
dc.date.issued2012
dc.identifier.citationHuang, R.,Oba, S.,Palaiahnakote, S.,Uchida, S. (2012). Scene character detection and recognition based on multiple hypotheses framework. Proceedings - International Conference on Pattern Recognition : 717-720. ScholarBank@NUS Repository.
dc.identifier.isbn9784990644109
dc.identifier.issn10514651
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/78334
dc.description.abstractTo handle the diversity of scene characters, we propose a multiple hypotheses framework which consists of an image operator set module, an optical character recognition (OCR) module, and an integration module. Image operators detect multiple suspicious character areas. The OCR engine is then applied to each detected area and returns multiple candidates with weight values for future integration. Without the aid of heuristic constraints on area, aspect ratio or color etc., the integration module prunes the redundant detection and pads the missing detection based on the outputs of OCR. The experimental results demonstrate that the whole multiple hypotheses outperforms each operator's hypotheses and be comparable with existing methods in terms of recall, precision, F-measure and recognition rate. © 2012 ICPR Org Committee.
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.sourcetitleProceedings - International Conference on Pattern Recognition
dc.description.page717-720
dc.description.codenPICRE
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.