Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-40627-0_53
Title: Optimizing STR algorithms with tuple compression
Authors: Xia, W.
Yap, R.H.C. 
Issue Date: 2013
Citation: Xia, W.,Yap, R.H.C. (2013). Optimizing STR algorithms with tuple compression. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8124 LNCS : 724-732. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-642-40627-0_53
Abstract: Table constraints define an arbitrary constraint explicitly as a set of solutions (tuples) or non-solutions. Thus, space is proportional to number of tuples. Simple Tabular Reduction (STR), which dynamically reduces the table size by maintaining a table of only the valid tuples, has been shown to be efficient for enforcing Generalized Arc Consistency. The Cartesian product representation is another way of having a smaller table by compression. We investigate whether STR and the Cartesian product representation can work hand in hand. Our experiments show the compression-based STR can be faster once the tables compress well. Thus, the benefits of the STR2 and STR3 algorithms respectively are retained while consuming less space. © 2013 Springer-Verlag.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/78274
ISBN: 9783642406263
ISSN: 03029743
DOI: 10.1007/978-3-642-40627-0_53
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.