Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/78253
DC FieldValue
dc.titleNeural logic network learning using genetic programming
dc.contributor.authorTan, C.L.
dc.contributor.authorChia, H.W.K.
dc.date.accessioned2014-07-04T03:14:10Z
dc.date.available2014-07-04T03:14:10Z
dc.date.issued2001
dc.identifier.citationTan, C.L.,Chia, H.W.K. (2001). Neural logic network learning using genetic programming. IJCAI International Joint Conference on Artificial Intelligence : 803-808. ScholarBank@NUS Repository.
dc.identifier.issn10450823
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/78253
dc.description.abstractNeural Logic Network or Neulonet is a hybrid of neural network expert systems. Its strength lies in its ability to learn and to represent human logic in decision making using component net rules. The technique originally employed in neulonet learning is backpropagation. However, the resulting weight adjustments will lead to a loss in the logic of the net rules. A new technique is now developed that allows the neulonet to learn by composing net rules using genetic programming. This paper presents experimental results to demonstrate this new and exciting capability in capturing human decision logic from examples. Comparisons will also be made between the use of net rules, and the use of standard boolean logic of negation, disjunction and conjunction in evolutionary computation.
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.sourcetitleIJCAI International Joint Conference on Artificial Intelligence
dc.description.page803-808
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.