Please use this identifier to cite or link to this item:
Title: Mining frequent itemsets using support constraints
Authors: Wang, K. 
He, Y. 
Han, J.
Issue Date: 2000
Citation: Wang, K.,He, Y.,Han, J. (2000). Mining frequent itemsets using support constraints. Proceedings of the 26th International Conference on Very Large Data Bases, VLDB'00 : 43-52. ScholarBank@NUS Repository.
Abstract: Interesting patterns often occur at varied levels of support. The classic association mining based on a uniform minimum support, such as Aprio.-i, either misses interesting patterns of low support or suffers from the bottleneck of itemset generation. A better solution is to exploit Support constraints, which specify what minimum support is required for what itemseta, so that only necessary itemsets are generated. In this paper, we present a framework of frequent itemset mining in the presence of support constraints. Our approach is to "push" support constraints into the Apriori it.emset generation so that the "best" minimum support is used for each itemset at run time to preserve the essence of Apriori.
Source Title: Proceedings of the 26th International Conference on Very Large Data Bases, VLDB'00
ISBN: 1558607153
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.