Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-38613-8_12
DC FieldValue
dc.titleImproved reachability analysis in DTMC via divide and conquer
dc.contributor.authorSong, S.
dc.contributor.authorGui, L.
dc.contributor.authorSun, J.
dc.contributor.authorLiu, Y.
dc.contributor.authorDong, J.S.
dc.date.accessioned2014-07-04T03:13:23Z
dc.date.available2014-07-04T03:13:23Z
dc.date.issued2013
dc.identifier.citationSong, S.,Gui, L.,Sun, J.,Liu, Y.,Dong, J.S. (2013). Improved reachability analysis in DTMC via divide and conquer. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7940 LNCS : 162-176. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/978-3-642-38613-8_12" target="_blank">https://doi.org/10.1007/978-3-642-38613-8_12</a>
dc.identifier.isbn9783642386121
dc.identifier.issn03029743
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/78185
dc.description.abstractDiscrete Time Markov Chains (DTMCs) are widely used to model probabilistic systems in many domains, such as biology, network and communication protocols. There are two main approaches for probability reachability analysis of DTMCs, i.e., solving linear equations or using value iteration. However, both approaches have drawbacks. On one hand, solving linear equations can generate accurate results, but it can be only applied to relatively small models. On the other hand, value iteration is more scalable, but often suffers from slow convergence. Furthermore, it is unclear how to parallelize (i.e., taking advantage of multi-cores or distributed computers) these two approaches. In this work, we propose a divide-and-conquer approach to eliminate loops in DTMC and hereby speed up probabilistic reachability analysis. A DTMC is separated into several partitions according to our proposed cutting criteria. Each partition is then solved by Gauss-Jordan elimination effectively and the state space is reduced afterwards. This divide and conquer algorithm will continue until there is no loop existing in the system. Experiments are conducted to demonstrate that our approach can generate accurate results, avoid the slow convergence problems and handle larger models. © 2013 Springer-Verlag Berlin Heidelberg.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/978-3-642-38613-8_12
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1007/978-3-642-38613-8_12
dc.description.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.description.volume7940 LNCS
dc.description.page162-176
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.