Please use this identifier to cite or link to this item: https://doi.org/10.1109/ICTAI.2012.39
DC FieldValue
dc.titleDiscrete variable generation for improved neural network classification
dc.contributor.authorSetiono, R.
dc.contributor.authorSeret, A.
dc.date.accessioned2014-07-04T03:12:25Z
dc.date.available2014-07-04T03:12:25Z
dc.date.issued2012
dc.identifier.citationSetiono, R., Seret, A. (2012). Discrete variable generation for improved neural network classification. Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI 1 : 230-237. ScholarBank@NUS Repository. https://doi.org/10.1109/ICTAI.2012.39
dc.identifier.isbn9780769549156
dc.identifier.issn10823409
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/78099
dc.description.abstractNeural networks are widely used for classification as they achieve good predictive accuracy. When the class labels are determined by complex interactions of the input variables, neural networks can be expected to provide better predictions than methods that test on the values of one variable at a time such as univariate decision tree classifiers. On the other hand, when no or relatively simple interaction between variables determines the class membership, the neural network may over fit the data and the input-to-output relationship in the data is represented by a function that is more complex than it should be. In this paper, we propose adding discretized values of the continuous variables in the data as input when training the neural networks. Finding out whether the discretized values or the original continuous values of the variables are useful is achieved by pruning. By having only the relevant inputs left in the pruned networks, we are able to extract classification rules from these networks that are accurate, concise and interpretable. © 2012 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/ICTAI.2012.39
dc.sourceScopus
dc.subjectaxis parallel rules
dc.subjectNetwork pruning
dc.subjectoblique rules
dc.subjectrule extraction
dc.typeConference Paper
dc.contributor.departmentINFORMATION SYSTEMS
dc.description.doi10.1109/ICTAI.2012.39
dc.description.sourcetitleProceedings - International Conference on Tools with Artificial Intelligence, ICTAI
dc.description.volume1
dc.description.page230-237
dc.description.codenPCTIF
dc.identifier.isiut000320861900030
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.