Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-40811-3_50
DC FieldValue
dc.titleA stochastic model for automatic extraction of 3D neuronal morphology
dc.contributor.authorBasu, S.
dc.contributor.authorKulikova, M.
dc.contributor.authorZhizhina, E.
dc.contributor.authorOoi, W.T.
dc.contributor.authorRacoceanu, D.
dc.date.accessioned2014-07-04T03:11:07Z
dc.date.available2014-07-04T03:11:07Z
dc.date.issued2013
dc.identifier.citationBasu, S.,Kulikova, M.,Zhizhina, E.,Ooi, W.T.,Racoceanu, D. (2013). A stochastic model for automatic extraction of 3D neuronal morphology. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8149 LNCS (PART 1) : 396-403. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/978-3-642-40811-3_50" target="_blank">https://doi.org/10.1007/978-3-642-40811-3_50</a>
dc.identifier.isbn9783642408106
dc.identifier.issn03029743
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/77986
dc.description.abstractTubular structures are frequently encountered in bio-medical images. The center-lines of these tubules provide an accurate representation of the topology of the structures. We introduce a stochastic Marked Point Process framework for fully automatic extraction of tubular structures requiring no user interaction or seed points for initialization. Our Marked Point Process model enables unsupervised network extraction by fitting a configuration of objects with globally optimal associated energy to the centreline of the arbors. For this purpose we propose special configurations of marked objects and an energy function well adapted for detection of 3D tubular branches. The optimization of the energy function is achieved by a stochastic, discrete-time multiple birth and death dynamics. Our method finds the centreline, local width and orientation of neuronal arbors and identifies critical nodes like bifurcations and terminals. The proposed model is tested on 3D light microscopy images from the DIADEM data set with promising results. © 2013 Springer-Verlag.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/978-3-642-40811-3_50
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1007/978-3-642-40811-3_50
dc.description.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.description.volume8149 LNCS
dc.description.issuePART 1
dc.description.page396-403
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.