Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-41924-9_21
DC FieldValue
dc.titleA semantic approach to keyword search over relational databases
dc.contributor.authorZeng, Z.
dc.contributor.authorBao, Z.
dc.contributor.authorLee, M.L.
dc.contributor.authorLing, T.W.
dc.date.accessioned2014-07-04T03:11:03Z
dc.date.available2014-07-04T03:11:03Z
dc.date.issued2013
dc.identifier.citationZeng, Z.,Bao, Z.,Lee, M.L.,Ling, T.W. (2013). A semantic approach to keyword search over relational databases. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8217 LNCS : 241-254. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/978-3-642-41924-9_21" target="_blank">https://doi.org/10.1007/978-3-642-41924-9_21</a>
dc.identifier.isbn9783642419232
dc.identifier.issn03029743
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/77980
dc.description.abstractResearch in relational keyword search has been focused on the efficient computation of results as well as strategies to rank and output the most relevant ones. However, the challenge to retrieve the intended results remains. Existing relational keyword search techniques suffer from the problem of returning overwhelming number of results, many of which may not be useful. In this work, we adopt a semantic approach to relational keyword search via an Object-Relationship-Mixed data graph. This graph is constructed based on database schema constraints to capture the semantics of objects and relationships in the data. Each node in the ORM data graph represents either an object, or a relationship, or both. We design an algorithm that utilizes the ORM data graph to process keyword queries. Experiment results show our approach returns more informative results compared to existing methods, and is efficient. © Springer-Verlag 2013.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/978-3-642-41924-9_21
dc.sourceScopus
dc.subjectKeyword search
dc.subjectRelational databases
dc.subjectSemantic approach
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1007/978-3-642-41924-9_21
dc.description.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.description.volume8217 LNCS
dc.description.page241-254
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.