Please use this identifier to cite or link to this item: https://doi.org/10.1109/ISLPED.2013.6629290
DC FieldValue
dc.titleA practical low-power memristor-based analog neural branch predictor
dc.contributor.authorWang, J.
dc.contributor.authorTim, Y.
dc.contributor.authorWong, W.-F.
dc.contributor.authorLi, H.H.
dc.date.accessioned2014-07-04T03:10:59Z
dc.date.available2014-07-04T03:10:59Z
dc.date.issued2013
dc.identifier.citationWang, J.,Tim, Y.,Wong, W.-F.,Li, H.H. (2013). A practical low-power memristor-based analog neural branch predictor. Proceedings of the International Symposium on Low Power Electronics and Design : 175-180. ScholarBank@NUS Repository. <a href="https://doi.org/10.1109/ISLPED.2013.6629290" target="_blank">https://doi.org/10.1109/ISLPED.2013.6629290</a>
dc.identifier.isbn9781479912353
dc.identifier.issn15334678
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/77974
dc.description.abstractRecently, the discovery of memristor brought the promise of high density, low energy, and combined memory/arithmetic capability into computing. This paper demonstrates a practical neural branch predictor based on memristor. By using analog computation techniques, as well as exploiting the accuracy tolerance of branch prediction, our design is able to efficiently realize a neural prediction algorithm. Compared to the digital counterpart, our method achieves significant energy reduction while maintaining a better prediction accuracy and a higher IPC. Our approach also reduces the resource and energy required by an alternative design. © 2013 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/ISLPED.2013.6629290
dc.sourceScopus
dc.subjectBranch Prediction
dc.subjectMemristor
dc.subjectNeural Branch Predictor
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1109/ISLPED.2013.6629290
dc.description.sourcetitleProceedings of the International Symposium on Low Power Electronics and Design
dc.description.page175-180
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.