Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/77502
DC FieldValue
dc.titleUnsupervised multiscale change detection in multitemporal synthetic aperture radar images
dc.contributor.authorCelik, T.
dc.date.accessioned2014-06-23T05:55:52Z
dc.date.available2014-06-23T05:55:52Z
dc.date.issued2009
dc.identifier.citationCelik, T. (2009). Unsupervised multiscale change detection in multitemporal synthetic aperture radar images. European Signal Processing Conference : 1547-1551. ScholarBank@NUS Repository.
dc.identifier.issn22195491
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/77502
dc.description.abstractIn this paper, an unsupervised change detection technique for synthetic aperture radar (SAR) images is proposed by conducting probabilistic Bayesian inferencing with expectation maximization-based parameter estimation to perform unsu-pervised thresholding over the data collected from the dual-tree complex wavelet transform (DT-CWT) subbands generated at the various scales. The proposed approach exploits a DT-CWT-based multiscale decomposition of the log-ratio image aimed at achieving different scales of representation of the change signal. Experimental results obtained on multitemporal SAR images acquired by the ERS-1, and JERS satellites confirm the effectiveness of the proposed approach. © EURASIP, 2009.
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentCHEMISTRY
dc.description.sourcetitleEuropean Signal Processing Conference
dc.description.page1547-1551
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.