Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/74887
DC FieldValue
dc.titleLinear phase recovery from DIC microscope
dc.contributor.authorKoua, S.S.
dc.contributor.authorShepparda, C.
dc.date.accessioned2014-06-19T08:58:39Z
dc.date.available2014-06-19T08:58:39Z
dc.date.issued2010
dc.identifier.citationKoua, S.S.,Shepparda, C. (2010). Linear phase recovery from DIC microscope. AIP Conference Proceedings 1236 : 301-306. ScholarBank@NUS Repository.
dc.identifier.isbn9780735407831
dc.identifier.issn0094243X
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/74887
dc.description.abstractPhase contrast imaging is a specific technique in optical microscopy that is able to capture the minute structures of unlabeled biological sample from contrast generated in the variations of the object's refractive index. It is especially suitable for living cells and organisms that are hardly visible under conventional light microscopy as they barely alter the intensity and only introduce phase shifts in the transmitted light. Optical phase imaging has great potential in biomedical applications from examining both topological and three-dimensional biophysical properties of biological specimens. Conventional DIC microscopy with partially coherent light source is a very powerful technique for phase contrast imaging with its pseudo 3D bias-relief look, and is able to yield higher lateral resolution compared to other interferometric phase imaging methods. Mos t importantly, DIC microscope generates contrast from within the sample's own intrinsic properties and is the preferred tool for visualization in most biology laboratories after fluorescence. However, it is inherently qualitative and the information obtained is a phase-gradient image rather than a true linear mapping of the optical path length (OPL) differences. We propose a novel method here that extends the Transport-of- Inte nsity Equation (TIE) and combines the correlation of light intensity and phase with polarization- modulated differential interference contrast (DIC) microscopy. Numerically solving the relationship of light propagation in a series of through-focus DIC images allows linear phase information to be completely determined and restored from phase gradients in two-dimensional planes. Since the computation is deterministic, live time imaging of cellular dynamics can be obtained with superior resolution without much hardware modification or additional computation complexity. © 2010 American Institute of Physics.
dc.sourceScopus
dc.subjectBiomedical optics
dc.subjectQuantitative phase
dc.subjectThree-dimensional microscopy
dc.typeConference Paper
dc.contributor.departmentBIOENGINEERING
dc.description.sourcetitleAIP Conference Proceedings
dc.description.volume1236
dc.description.page301-306
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.