Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-40020-9_15
DC FieldValue
dc.titleBayesian atlas estimation from high angular resolution diffusion imaging (HARDI)
dc.contributor.authorDu, J.
dc.contributor.authorGoh, A.
dc.contributor.authorQiu, A.
dc.date.accessioned2014-06-19T08:58:00Z
dc.date.available2014-06-19T08:58:00Z
dc.date.issued2013
dc.identifier.citationDu, J.,Goh, A.,Qiu, A. (2013). Bayesian atlas estimation from high angular resolution diffusion imaging (HARDI). Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8085 LNCS : 149-157. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/978-3-642-40020-9_15" target="_blank">https://doi.org/10.1007/978-3-642-40020-9_15</a>
dc.identifier.isbn9783642400193
dc.identifier.issn03029743
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/74831
dc.description.abstractWe present a Bayesian probabilistic model to estimate the atlas of the brain white matter characterized by orientation distribution functions (ODFs) derived from HARDI. We employ the framework of large deformation diffeomorphic metric mapping and assume that the HARDI atlas is generated from a known hyperatlas through a flow of diffeomorphisms. We represent the shape prior of the HARDI atlas and the diffeomorphic transformation of individual observations relative to the atlas using centered Gaussian random fields (GRF). We then assume that the observed ODFs are generated by an exponential map of random tangent vectors at the deformed atlas ODF and model the likelihood of the ODFs using a GRF of their tangent vectors in the ODF Riemannian manifold. We solve for the maximum a posteriori using the Expectation-Maximization (EM) algorithm. We illustrate the HARDI atlas constructed based on a cohort of 40 normal adults and empirically demonstrate the convergence of this EM atlas generation algorithm and effects of the hyperatlas on the estimated HARDI atlas. © 2013 Springer-Verlag.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/978-3-642-40020-9_15
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentMATHEMATICS
dc.contributor.departmentBIOENGINEERING
dc.description.doi10.1007/978-3-642-40020-9_15
dc.description.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.description.volume8085 LNCS
dc.description.page149-157
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.