Please use this identifier to cite or link to this item: https://doi.org/10.1109/ICIG.2011.87
DC FieldValue
dc.titleSupervised sparse patch coding towards misalignment-robust face recognition
dc.contributor.authorLang, C.
dc.contributor.authorCheng, B.
dc.contributor.authorFeng, S.
dc.contributor.authorYuan, X.
dc.date.accessioned2014-06-19T03:29:08Z
dc.date.available2014-06-19T03:29:08Z
dc.date.issued2011
dc.identifier.citationLang, C.,Cheng, B.,Feng, S.,Yuan, X. (2011). Supervised sparse patch coding towards misalignment-robust face recognition. Proceedings - 6th International Conference on Image and Graphics, ICIG 2011 : 599-604. ScholarBank@NUS Repository. <a href="https://doi.org/10.1109/ICIG.2011.87" target="_blank">https://doi.org/10.1109/ICIG.2011.87</a>
dc.identifier.isbn9780769545417
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/71902
dc.description.abstractWe address the challenging problem of face recognition under the scenarios where both training and test data are possibly contaminated with spatial misalignments. A supervised sparse coding framework is developed in this paper towards a practical solution to misalignment-robust face recognition. Each given probe face image is then uniformly divided into a set of local patches. We propose to sparsely reconstruct each probe image patch from the patches of all gallery images, and at the same time the reconstructions for all patches of the probe image are regularized by one term towards enforcing sparsity on the subjects of those selected patches. The derived reconstruction coefficients by ℓ 1-norm minimization are then utilized to fuse the subject information of the patches for identifying the probe face. Such a supervised sparse coding framework provides a unique solution to face recognition. Extensive face recognition experiments on three benchmark face datasets demonstrate the advantages of the proposed framework over holistic sparse coding and conventional subspace learning based algorithms in terms of robustness to spatial misalignments and image occlusions. © 2011 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/ICIG.2011.87
dc.sourceScopus
dc.subjectFace recognition
dc.subjectSpatial misalignments
dc.subjectSupervised sparse coding
dc.typeConference Paper
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1109/ICIG.2011.87
dc.description.sourcetitleProceedings - 6th International Conference on Image and Graphics, ICIG 2011
dc.description.page599-604
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.