Please use this identifier to cite or link to this item: https://doi.org/10.1109/DSR.2011.6026841
DC FieldValue
dc.titleResponses of human fetal mesenchymal stem cells to various poly(ε-caprolactone) films: A comparison study
dc.contributor.authorWang, Z.-Y.
dc.contributor.authorJing, L.
dc.contributor.authorZhang, Q.-Y.
dc.contributor.authorTeo, E.Y.
dc.contributor.authorChan, J.
dc.contributor.authorHong, M.-H.
dc.contributor.authorWen, F.
dc.contributor.authorTeoh, S.-H.
dc.date.accessioned2014-06-19T03:25:59Z
dc.date.available2014-06-19T03:25:59Z
dc.date.issued2011
dc.identifier.citationWang, Z.-Y.,Jing, L.,Zhang, Q.-Y.,Teo, E.Y.,Chan, J.,Hong, M.-H.,Wen, F.,Teoh, S.-H. (2011). Responses of human fetal mesenchymal stem cells to various poly(ε-caprolactone) films: A comparison study. 2011 Defense Science Research Conference and Expo, DSR 2011 : -. ScholarBank@NUS Repository. <a href="https://doi.org/10.1109/DSR.2011.6026841" target="_blank">https://doi.org/10.1109/DSR.2011.6026841</a>
dc.identifier.isbn9781424492763
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/71634
dc.description.abstractPoly(ε-caprolactone) (PCL) films have been applied for vascular tissue engineering. However, few studies studied the effects of fabrication process of PCL film on vascular cell proliferation. In this study, we used different processing methods, incorporating stretching, to fabricate various PCL films. Thickness of films before and after stretch and proliferation ability of human fetal mesenchymal stem cells (hfMSCs) on these films were investigated. Our results showed that stretching significantly reduces the thickness of solvent cast, heat press and cast stretch films (0.22, 0.59, 0.60, p &lt; 0.001, p &lt; 0.01, p &lt; 0.05) while increasing the thickness of electrospun fibrous film (1.27). Heat-press PCL film maintains good stiffness after stretching. Cell testing results showed that fabrication method and stretching both affect the proliferation ability of hfMSCs. Heat-press PCL film after stretching, compared with other films, has moderate ability to allow hfMSCs proliferation. Using collagen coating as positive control, stretched heat-press PCL film shows comparable ability to allow hfMSCs adhesion and proliferation. In addition, earlier passage hfMSCs possess larger proliferation ability on stretched heat-press PCL film than later passage cells (1.34 - 1.58, p &lt; 0.01, p &lt; 0.001). In conclusion, heat-press PCL film after stretching reduces the material usage and possesses good ability to allow hfMSCs adhesion and proliferation. Therefore, it could be a promising substrate for vascular tissue engineering applications. © 2011 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/DSR.2011.6026841
dc.sourceScopus
dc.subjectheat press
dc.subjecthfMSCs
dc.subjectPoly(e -caprolactone)
dc.subjectvascular tissue engineering
dc.typeConference Paper
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1109/DSR.2011.6026841
dc.description.sourcetitle2011 Defense Science Research Conference and Expo, DSR 2011
dc.description.page-
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.