Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-15558-1_54
DC FieldValue
dc.titleRandomized locality sensitive vocabularies for bag-of-features model
dc.contributor.authorMu, Y.
dc.contributor.authorSun, J.
dc.contributor.authorHan, T.X.
dc.contributor.authorCheong, L.-F.
dc.contributor.authorYan, S.
dc.date.accessioned2014-06-19T03:24:55Z
dc.date.available2014-06-19T03:24:55Z
dc.date.issued2010
dc.identifier.citationMu, Y., Sun, J., Han, T.X., Cheong, L.-F., Yan, S. (2010). Randomized locality sensitive vocabularies for bag-of-features model. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6313 LNCS (PART 3) : 748-761. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-642-15558-1_54
dc.identifier.isbn364215557X
dc.identifier.issn03029743
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/71544
dc.description.abstractVisual vocabulary construction is an integral part of the popular Bag-of-Features (BOF) model. When visual data scale up (in terms of the dimensionality of features or/and the number of samples), most existing algorithms (e.g. k-means) become unfavorable due to the prohibitive time and space requirements. In this paper we propose the random locality sensitive vocabulary (RLSV) scheme towards efficient visual vocabulary construction in such scenarios. Integrating ideas from the Locality Sensitive Hashing (LSH) and the Random Forest (RF), RLSV generates and aggregates multiple visual vocabularies based on random projections, without taking clustering or training efforts. This simple scheme demonstrates superior time and space efficiency over prior methods, in both theory and practice, while often achieving comparable or even better performances. Besides, extensions to supervised and kernelized vocabulary constructions are also discussed and experimented with. © 2010 Springer-Verlag.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/978-3-642-15558-1_54
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.contributor.departmentINTERACTIVE & DIGITAL MEDIA INSTITUTE
dc.description.doi10.1007/978-3-642-15558-1_54
dc.description.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.description.volume6313 LNCS
dc.description.issuePART 3
dc.description.page748-761
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.