Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/70581
DC FieldValue
dc.titleIncremental maintenance of biological databases using association rule mining
dc.contributor.authorLam, K.-T.
dc.contributor.authorKoh, J.L.Y.
dc.contributor.authorVeeravalli, B.
dc.contributor.authorBrusic, V.
dc.date.accessioned2014-06-19T03:13:47Z
dc.date.available2014-06-19T03:13:47Z
dc.date.issued2006
dc.identifier.citationLam, K.-T.,Koh, J.L.Y.,Veeravalli, B.,Brusic, V. (2006). Incremental maintenance of biological databases using association rule mining. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4146 LNBI : 140-150. ScholarBank@NUS Repository.
dc.identifier.isbn3540374469
dc.identifier.issn03029743
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/70581
dc.description.abstractBiological research frequently requires specialist databases to support in-depth analysis about specific subjects. With the rapid growth of biological sequences in public domain data sources, it is difficult to keep these databases current with the sources. Simple queries formulated to retrieve relevant sequences typically return a large number of false matches and thus demanding manual filtration. In this paper, we propose a novel methodology that can support automatic incremental updating of specialist databases. Complex queries for incremental updating of relevant sequences are learned using Association Rule Mining (ARM), resulting in a significant reduction in false positive matches. This is the first time ARM is used in formulating descriptive queries for the purpose of incremental maintenance of specialised biological databases. We have implemented and tested our methodology on two real-world databases. Our experiments conclusively show that the methodology guarantees an F-score of up to 80% in detecting new sequences for these two databases. © Springer-Verlag Berlin Heidelberg 2006.
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.description.volume4146 LNBI
dc.description.page140-150
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.