Please use this identifier to cite or link to this item: https://doi.org/10.1109/IJCNN.2012.6252652
DC FieldValue
dc.titleDynamically weighted classification with clustering to tackle non-stationarity in Brain computer interfacing
dc.contributor.authorLiyanage, S.R.
dc.contributor.authorGuan, C.
dc.contributor.authorZhang, H.
dc.contributor.authorAng, K.K.
dc.contributor.authorXu, J.-X.
dc.contributor.authorLee, T.H.
dc.date.accessioned2014-06-19T03:07:45Z
dc.date.available2014-06-19T03:07:45Z
dc.date.issued2012
dc.identifier.citationLiyanage, S.R.,Guan, C.,Zhang, H.,Ang, K.K.,Xu, J.-X.,Lee, T.H. (2012). Dynamically weighted classification with clustering to tackle non-stationarity in Brain computer interfacing. Proceedings of the International Joint Conference on Neural Networks : -. ScholarBank@NUS Repository. <a href="https://doi.org/10.1109/IJCNN.2012.6252652" target="_blank">https://doi.org/10.1109/IJCNN.2012.6252652</a>
dc.identifier.isbn9781467314909
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/70058
dc.description.abstractThis paper addresses an important problem known as EEG non-stationarity in Brain-computer Interfacing. We propose a novel technique called Dynamically Weighted Classification with Clustering (DWCC), which explores hidden states in non-stationary EEG using a modified k-means clustering method by combining cosine distance measure and mutual information criterion. DWCC builds a set of classifiers, one for each pair of clusters from different classes. A dynamically-weighted classifier ensemble network is trained to combine the outputs of the classifiers, where we propose to dynamically assign the weight of a classifier for each test sample based on its distances to the cluster centres associated with the classifier. Experimental results on publicly available BCI Competition IV Dataset 2a yielded a mean accuracy of 81.5% which is statistically significant (t-test p&lt;60;0.05) compared to the baseline result of 75.9% using a single classifier. © 2012 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/IJCNN.2012.6252652
dc.sourceScopus
dc.subjectBrain-computer interface (BCI)
dc.subjectclassification
dc.subjectclustering
dc.subjectmotor imagery
dc.typeConference Paper
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1109/IJCNN.2012.6252652
dc.description.sourcetitleProceedings of the International Joint Conference on Neural Networks
dc.description.page-
dc.description.coden85OFA
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.