Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/69963
DC FieldValue
dc.titleDirect RBF neural network control of a class of discrete-time non-affine nonlinear systems
dc.contributor.authorZhang, J.
dc.contributor.authorGe, S.S.
dc.contributor.authorLee, T.H.
dc.date.accessioned2014-06-19T03:06:39Z
dc.date.available2014-06-19T03:06:39Z
dc.date.issued2002
dc.identifier.citationZhang, J.,Ge, S.S.,Lee, T.H. (2002). Direct RBF neural network control of a class of discrete-time non-affine nonlinear systems. Proceedings of the American Control Conference 1 : 424-429. ScholarBank@NUS Repository.
dc.identifier.issn07431619
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/69963
dc.description.abstractIn this paper, direct adaptive RBF NN control is presented for a class of discrete-time single-input single-output non-affine nonlinear systems. Implicit function theorem is used to prove the existence and uniqueness of the implicit desired feedback control. Based on the input-output model, RBF neural networks are used to emulate the implicit desired feedback control. The closed-loop is proven to be semi-globally uniformly ultimately bounded (SGUUB) if the design parameters are suitably chosen under certain mild conditions. Simulation results show the effectiveness of the direct RBF neural network control.
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.sourcetitleProceedings of the American Control Conference
dc.description.volume1
dc.description.page424-429
dc.description.codenPRACE
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.