Please use this identifier to cite or link to this item: https://doi.org/10.1109/CVPR.2013.64
DC FieldValue
dc.titleCompressed hashing
dc.contributor.authorLin, Y.
dc.contributor.authorJin, R.
dc.contributor.authorCai, D.
dc.contributor.authorYan, S.
dc.contributor.authorLi, X.
dc.date.accessioned2014-06-19T03:03:24Z
dc.date.available2014-06-19T03:03:24Z
dc.date.issued2013
dc.identifier.citationLin, Y., Jin, R., Cai, D., Yan, S., Li, X. (2013). Compressed hashing. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition : 446-451. ScholarBank@NUS Repository. https://doi.org/10.1109/CVPR.2013.64
dc.identifier.issn10636919
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/69677
dc.description.abstractRecent studies have shown that hashing methods are effective for high dimensional nearest neighbor search. A common problem shared by many existing hashing methods is that in order to achieve a satisfied performance, a large number of hash tables (i.e., long code-words) are required. To address this challenge, in this paper we propose a novel approach called Compressed Hashing by exploring the techniques of sparse coding and compressed sensing. In particular, we introduce as parse coding scheme, based on the approximation theory of integral operator, that generate sparse representation for high dimensional vectors. We then project s-parse codes into a low dimensional space by effectively exploring the Restricted Isometry Property (RIP), a key property in compressed sensing theory. Both of the theoretical analysis and the empirical studies on two large data sets show that the proposed approach is more effective than the state-of-the-art hashing algorithms. © 2013 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/CVPR.2013.64
dc.sourceScopus
dc.subjectCompressed Sensing
dc.subjectHashing
dc.subjectNearest Neighbor Search
dc.subjectRandom Projection
dc.typeConference Paper
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1109/CVPR.2013.64
dc.description.sourcetitleProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
dc.description.page446-451
dc.description.codenPIVRE
dc.identifier.isiut000331094300057
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.