Please use this identifier to cite or link to this item: https://doi.org/10.1109/OCEANS-Bergen.2013.6608000
DC FieldValue
dc.titleBayesian multi-hypothesis scan matching
dc.contributor.authorBrekke, E.
dc.contributor.authorChitre, M.
dc.date.accessioned2014-06-19T03:01:22Z
dc.date.available2014-06-19T03:01:22Z
dc.date.issued2013
dc.identifier.citationBrekke, E.,Chitre, M. (2013). Bayesian multi-hypothesis scan matching. OCEANS 2013 MTS/IEEE Bergen: The Challenges of the Northern Dimension : -. ScholarBank@NUS Repository. <a href="https://doi.org/10.1109/OCEANS-Bergen.2013.6608000" target="_blank">https://doi.org/10.1109/OCEANS-Bergen.2013.6608000</a>
dc.identifier.isbn9781479900015
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/69495
dc.description.abstractThis paper proposes a multi-hypothesis solution to the simplified problem of simultaneous localization and mapping (SLAM) that arises when only two measurement frames are available. The proposed solution calculates hypothesis probabilities according to modeling based on standard multitarget tracking (MTT). State estimation is carried out by a hybrid technique consisting of extended Kalman filtering (EKF) and natural gradient (NG) optimization. The search for promising candidate hypotheses is carried out by Bron &amp; Kerbosh' clique detection algorithm. Both Monte-Carlo simulations and implementation on real-world sonar data show that the proposed approach has desirable robustness properties. © 2013 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/OCEANS-Bergen.2013.6608000
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentTROPICAL MARINE SCIENCE INSTITUTE
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1109/OCEANS-Bergen.2013.6608000
dc.description.sourcetitleOCEANS 2013 MTS/IEEE Bergen: The Challenges of the Northern Dimension
dc.description.page-
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.