Please use this identifier to cite or link to this item: https://doi.org/10.1109/IECON.2011.6120009
DC FieldValue
dc.titleAn optimal linear controller design for an underactuated unicycle
dc.contributor.authorXu, J.-X.
dc.contributor.authorLim, J.L.
dc.contributor.authorMamun, A.
dc.contributor.authorGuo, Z.-Q.
dc.contributor.authorLee, T.H.
dc.date.accessioned2014-06-19T02:59:44Z
dc.date.available2014-06-19T02:59:44Z
dc.date.issued2011
dc.identifier.citationXu, J.-X.,Lim, J.L.,Mamun, A.,Guo, Z.-Q.,Lee, T.H. (2011). An optimal linear controller design for an underactuated unicycle. IECON Proceedings (Industrial Electronics Conference) : 4266-4271. ScholarBank@NUS Repository. <a href="https://doi.org/10.1109/IECON.2011.6120009" target="_blank">https://doi.org/10.1109/IECON.2011.6120009</a>
dc.identifier.isbn9781612849720
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/69356
dc.description.abstractIn this work, we develop a unicycle that consists of a wheel and a pendulum. The control objective is for unicycle to track a given trajectory while keep the pendulum at the balanced position. In the unicycle, the only actuator is a motor mounted on the chassis, which generates torque to drive wheel. Hence the unicycle is an underactuated mechanism, and the control problem is challenging. The dynamic model of the unicycle is derived first and linearized around an equilibrium. Next, a LQR controller with full state feedback is designed based on the linearized model. Due to existence of parametric uncertainties and model mismatch such as the ignorance of actuator dynamics in the practical unicycle, LQR is unable to achieve desired control performance. Iterative learning tuning (ILT) method is introduced to adjust LQR so as to improve the control response iteratively. In this work, we propose an ILT law to tune the state weighting matrix in LQR objective function. The ILT law is derived by minimizing a scalar cost function with respect to the weighting matrix. Through simulation and experiment results, the effectiveness of the proposed LQR and ILT approach is validated. © 2011 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/IECON.2011.6120009
dc.sourceScopus
dc.subjectIterative learning
dc.subjectLQR
dc.subjectunderactuated
dc.typeConference Paper
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1109/IECON.2011.6120009
dc.description.sourcetitleIECON Proceedings (Industrial Electronics Conference)
dc.description.page4266-4271
dc.description.codenIEPRE
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.