Please use this identifier to cite or link to this item: https://doi.org/10.1109/ICME.2010.5583046
DC FieldValue
dc.titleActivity recognition using dense long-duration trajectories
dc.contributor.authorSun, J.
dc.contributor.authorMu, Y.
dc.contributor.authorYan, S.
dc.contributor.authorCheong, L.-F.
dc.date.accessioned2014-06-19T02:57:28Z
dc.date.available2014-06-19T02:57:28Z
dc.date.issued2010
dc.identifier.citationSun, J., Mu, Y., Yan, S., Cheong, L.-F. (2010). Activity recognition using dense long-duration trajectories. 2010 IEEE International Conference on Multimedia and Expo, ICME 2010 : 322-327. ScholarBank@NUS Repository. https://doi.org/10.1109/ICME.2010.5583046
dc.identifier.isbn9781424474912
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/69154
dc.description.abstractCurrent research on visual action/activity analysis has mostly exploited appearance-based static feature descriptions, plus statistics of short-range motion fields. The deliberate ignorance of dense, long-duration motion trajectories as features is largely due to the lack of mature mechanism for efficient extraction and quantitative representation of visual trajectories. In this paper, we propose a novel scheme for extraction and representation of dense, long-duration trajectories from video sequences, and demonstrate its ability to handle video sequences containing occlusions, camera motions, and nonrigid deformations. Moreover, we test the scheme on the KTH action recognition dataset [1], and show its promise as a scheme for general purpose long-duration motion description in realistic video sequences. © 2010 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/ICME.2010.5583046
dc.sourceScopus
dc.subjectAction recognition
dc.subjectComputer vision
dc.subjectMotion trajectories
dc.subjectMotion understanding
dc.subjectTracking
dc.subjectVideo analysis
dc.typeConference Paper
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.contributor.departmentINTERACTIVE & DIGITAL MEDIA INSTITUTE
dc.description.doi10.1109/ICME.2010.5583046
dc.description.sourcetitle2010 IEEE International Conference on Multimedia and Expo, ICME 2010
dc.description.page322-327
dc.identifier.isiut000287977700057
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.