Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/68896
Title: A multiobjective evolutionary algorithm for solving vehicle routing problem with stochastic demand
Authors: Cheong, C.Y.
Tan, K.C. 
Liu, D.K.
Xu, J.X. 
Issue Date: 2006
Citation: Cheong, C.Y.,Tan, K.C.,Liu, D.K.,Xu, J.X. (2006). A multiobjective evolutionary algorithm for solving vehicle routing problem with stochastic demand. 2006 IEEE Congress on Evolutionary Computation, CEC 2006 : 1370-1377. ScholarBank@NUS Repository.
Abstract: This paper considers the routing of vehicles with limited capacity from a central depot to a set of geographically dispersed customers where actual demand is revealed only when the vehicle arrives at the customer. The solution to this vehicle routing problem with stochastic demand (VRPSD) involves the optimization of complete routing schedules with minimum travel distance, driver remuneration, and number of vehicles, subject to a number of constraints such as vehicle time window and capacity. To solve such a multiobjective combinatorial optimization problem, this paper presents a multiobjective evolutionary algorithm that incorporates two VRPSD-specific heuristics for local exploitation and a route simulation method to evaluate the fitness of solutions. A novel way of assessing the quality of solutions to the VRPSD on top of comparing their expected costs is also proposed. It is shown that the algorithm is capable of finding useful tradeoff solutions which are robust to the stochastic nature of the problem. © 2006 IEEE.
Source Title: 2006 IEEE Congress on Evolutionary Computation, CEC 2006
URI: http://scholarbank.nus.edu.sg/handle/10635/68896
ISBN: 0780394879
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.