Please use this identifier to cite or link to this item: https://doi.org/10.1109/CDC.2003.1272262
DC FieldValue
dc.titleA General Recurrent Neural Network Model for Time-Varying Matrix Inversion
dc.contributor.authorZhang, Y.
dc.contributor.authorGe, S.S.
dc.date.accessioned2014-06-19T02:53:34Z
dc.date.available2014-06-19T02:53:34Z
dc.date.issued2003
dc.identifier.citationZhang, Y.,Ge, S.S. (2003). A General Recurrent Neural Network Model for Time-Varying Matrix Inversion. Proceedings of the IEEE Conference on Decision and Control 6 : 6169-6174. ScholarBank@NUS Repository. <a href="https://doi.org/10.1109/CDC.2003.1272262" target="_blank">https://doi.org/10.1109/CDC.2003.1272262</a>
dc.identifier.isbn0780379241
dc.identifier.issn01912216
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/68817
dc.description.abstractThis paper presents a general recurrent neural network model for online inversion of time-varying matrices. Utilizing the first-order time-derivative, the neural model guarantees its state trajectory globally converge to the exact inverse of a given time-varying matrix. In addition, exponential convergence can be achieved if linear or sigmoid activation function is used. Network sensitivity is also studied to show the desirable robustness property of this neural approach. Simulation results, including the application to kinematic control of redundant manipulators, are used to demonstrate the effectiveness and performance of the proposed neural model.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/CDC.2003.1272262
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1109/CDC.2003.1272262
dc.description.sourcetitleProceedings of the IEEE Conference on Decision and Control
dc.description.volume6
dc.description.page6169-6174
dc.description.codenPCDCD
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.