Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-1-84628-754-1_10
DC FieldValue
dc.titleHandling of imbalanced data in text classification: Category-based term weights
dc.contributor.authorLiu, Y.
dc.contributor.authorLoh, H.T.
dc.contributor.authorKamal, Y.-T.
dc.contributor.authorTor, S.B.
dc.date.accessioned2014-06-18T05:32:55Z
dc.date.available2014-06-18T05:32:55Z
dc.date.issued2007
dc.identifier.citationLiu, Y.,Loh, H.T.,Kamal, Y.-T.,Tor, S.B. (2007). Handling of imbalanced data in text classification: Category-based term weights. Natural Language Processing and Text Mining : 171-192. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/978-1-84628-754-1_10" target="_blank">https://doi.org/10.1007/978-1-84628-754-1_10</a>
dc.identifier.isbn184628175X
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/67957
dc.description.abstractLearning from imbalanced data has emerged as a new challenge to the machine learning (ML), data mining (DM) and text mining (TM) communities. Two recent workshops in 2000 [17] and 2003 [7] at AAAI and ICML conferences respectively and a special issue in ACM SIGKDD explorations [8] are dedicated to this topic. It has been witnessing growing interest and attention among researchers and practitioners seeking solutions in handling imbalanced data. An excellent review of the state-ofthe- art is given by Gary Weiss [43]. © 2007 Springer-Verlag London Limited.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/978-1-84628-754-1_10
dc.sourceScopus
dc.typeOthers
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1007/978-1-84628-754-1_10
dc.description.sourcetitleNatural Language Processing and Text Mining
dc.description.page171-192
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.