Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/66670
DC FieldValue
dc.titleMixing rules for binary Lennard-Jones chains: Theory and Monte Carlo simulation
dc.contributor.authorVon Solms, N.
dc.contributor.authorKoo, K.Y.
dc.contributor.authorChiew, Y.C.
dc.date.accessioned2014-06-17T08:33:06Z
dc.date.available2014-06-17T08:33:06Z
dc.date.issued2001-04-15
dc.identifier.citationVon Solms, N., Koo, K.Y., Chiew, Y.C. (2001-04-15). Mixing rules for binary Lennard-Jones chains: Theory and Monte Carlo simulation. Fluid Phase Equilibria 180 (1-2) : 71-85. ScholarBank@NUS Repository.
dc.identifier.issn03783812
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/66670
dc.description.abstractTheoretically-based van der Waals one-fluid (vdW1) mixing rules are derived for Lennard-Jones (LJ) chain mixtures. The rules provide equivalent one-fluid segment parameters for LJ size (σ) and energy (ε) parameter as well as chain length (m) based on the parameters of the individual mixture components and the component mole fractions. The mixing rules are tested by performing Monte Carlo simulations of eight different binary mixtures and the equivalent vdW1 pure fluid, each at three densities. The simulations test the effects of changing LJ size parameter, LJ energy parameter and chain length individually and together. The effects of mole fraction and density are also examined. The mixing rules are tested for accuracy in predicting compressibility factors and radial distribution functions. It is found that the vdW1 rules provide excellent agreement when size and energy parameter are varied. Good agreement is found for mixtures with different chain lengths. The discrepancy is worst at very high densities when all component parameters are varied simultaneously. Copyright © 2001 .
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0378-3812(00)00517-3
dc.sourceScopus
dc.subjectCompressibility factor
dc.subjectEquation of state
dc.subjectLennard-Jones chains
dc.subjectMixing rules
dc.subjectMixture
dc.subjectMolecular simulation
dc.subjectStatistical mechanics
dc.typeArticle
dc.contributor.departmentCHEMICAL & ENVIRONMENTAL ENGINEERING
dc.description.sourcetitleFluid Phase Equilibria
dc.description.volume180
dc.description.issue1-2
dc.description.page71-85
dc.description.codenFPEQD
dc.identifier.isiut000168616200005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.