Please use this identifier to cite or link to this item: https://doi.org/10.1002/fld.483
DC FieldValue
dc.titleThe third-order polynomial method for two-dimensional convection and diffusion
dc.contributor.authorTkalich, P.
dc.contributor.authorChan, E.S.
dc.date.accessioned2014-06-17T08:26:33Z
dc.date.available2014-06-17T08:26:33Z
dc.date.issued2003-03-30
dc.identifier.citationTkalich, P., Chan, E.S. (2003-03-30). The third-order polynomial method for two-dimensional convection and diffusion. International Journal for Numerical Methods in Fluids 41 (9) : 997-1019. ScholarBank@NUS Repository. https://doi.org/10.1002/fld.483
dc.identifier.issn02712091
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/66301
dc.description.abstractUsing the upstream polynomial approximation a series of accurate two-dimensional explicit numerical schemes is developed for the solution of the convection-diffusion equation. A third-order polynomial approximation (TOP) of the convection term and a consistent second-order approximation of the diffusion term are combined in a single-step flux-difference algorithm. Stability analysis confirms that the TOP-12 scheme satisfies the CFL condition for two dimensions. Using smaller and narrower flux stencils compared to algorithms of similar accuracy, the TOP-12 scheme is more efficient in terms of computations per single node. Numerical tests and comparison with other well-known algorithms show a high performance of the developed schemes. © 2003 John Wiley & Sons, Ltd.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1002/fld.483
dc.sourceScopus
dc.subjectConservative
dc.subjectConvection
dc.subjectDiffusion
dc.subjectPolynomial interpolation
dc.subjectPseudo-flux
dc.subjectThird order
dc.typeArticle
dc.contributor.departmentCIVIL ENGINEERING
dc.contributor.departmentTROPICAL MARINE SCIENCE INSTITUTE
dc.description.doi10.1002/fld.483
dc.description.sourcetitleInternational Journal for Numerical Methods in Fluids
dc.description.volume41
dc.description.issue9
dc.description.page997-1019
dc.description.codenIJNFD
dc.identifier.isiut000181675800005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

3
checked on Jan 24, 2020

WEB OF SCIENCETM
Citations

2
checked on Jan 24, 2020

Page view(s)

56
checked on Dec 29, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.