Please use this identifier to cite or link to this item: https://doi.org/10.1021/jp310841v
Title: On the origin of the quadrant I semicircle in intensity-modulated photocurrent spectra of P3HT:PCBM Bulk heterojunction solar cells: Evidence of degradation-related trap-assisted recombination
Authors: Set, Y.T.
Heinemann, M.D.
Birgersson, E. 
Luther, J. 
Issue Date: 25-Apr-2013
Citation: Set, Y.T., Heinemann, M.D., Birgersson, E., Luther, J. (2013-04-25). On the origin of the quadrant I semicircle in intensity-modulated photocurrent spectra of P3HT:PCBM Bulk heterojunction solar cells: Evidence of degradation-related trap-assisted recombination. Journal of Physical Chemistry C 117 (16) : 7993-8000. ScholarBank@NUS Repository. https://doi.org/10.1021/jp310841v
Abstract: Intensity-modulated photocurrent spectroscopy (IMPS) characterizes the charge carrier transport in a solar cell by subjecting it to a sinusoidally varying illumination and measuring the resultant photocurrent. The IMPS spectra of certain P3HT:PCBM bulk heterojunction solar cells exhibit a poorly understood feature: A quadrant I semicircle, which implies that the sinusoidal variation of the photocurrent leads that of the illumination in a certain frequency range. To understand the mechanisms underlying this feature, we have adopted a mathematical framework based on drift-diffusion modeling instead of the conventional equivalent circuit approach. By incorporating the effects of traps into the mathematical model and conducting targeted experiments, we have demonstrated that the quadrant I semicircle arises from degradation-related trap states behaving as recombination centers. Our analysis of the device's intrinsic mechanisms indicates that the trap-assisted recombination can have a time scale that is at least one order of magnitude slower than that of the carrier extraction mechanism; such a mismatch can generate the observed quadrant I semicircle. © 2013 American Chemical Society.
Source Title: Journal of Physical Chemistry C
URI: http://scholarbank.nus.edu.sg/handle/10635/64324
ISSN: 19327447
DOI: 10.1021/jp310841v
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.