Please use this identifier to cite or link to this item: https://doi.org/10.1016/0925-2312(94)90019-1
DC FieldValue
dc.titleA technique for on-line parameter estimation based on an analog artificial neural net structure
dc.contributor.authorLee, T.H.
dc.contributor.authorLoh, A.P.
dc.contributor.authorSrinivasan, V.
dc.date.accessioned2014-06-17T06:43:17Z
dc.date.available2014-06-17T06:43:17Z
dc.date.issued1994-08
dc.identifier.citationLee, T.H., Loh, A.P., Srinivasan, V. (1994-08). A technique for on-line parameter estimation based on an analog artificial neural net structure. Neurocomputing 6 (4) : 405-417. ScholarBank@NUS Repository. https://doi.org/10.1016/0925-2312(94)90019-1
dc.identifier.issn09252312
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/61725
dc.description.abstractIn this paper, we present a technique for on-line parameter estimation based on an analog artificial neural net structure. The architecture adopted is the so-called Hopfield net and the continuous state, or analog, version is used. The fundamental algorithm constructed is shown to be globally stable in the sense of Liapunov. This is further extended and developed to incorporate on-line recursion, and for systems with parameters that change over time, the most general version of our neural net algorithm incorporates recursion using data in exponentially weighted windows. Simulation results are provided to show the performance of the on-line estimator and its ability to track changing parameters with the use of exponential weighting. Additional simulation results are also included which shows the robustness of the estimator in the presence of unmodelled dynamics.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/0925-2312(94)90019-1
dc.sourceScopus
dc.subjectanalog artificial neural network
dc.subjectParameter estimation using neural networks
dc.subjectquadratic index optimization
dc.typeArticle
dc.contributor.departmentELECTRICAL ENGINEERING
dc.description.doi10.1016/0925-2312(94)90019-1
dc.description.sourcetitleNeurocomputing
dc.description.volume6
dc.description.issue4
dc.description.page405-417
dc.description.codenNRCGE
dc.identifier.isiutA1994PE46000002
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.