Please use this identifier to cite or link to this item: https://doi.org/10.1162/089976603762553013
DC FieldValue
dc.titleSMO algorithm for least-squares SVM formulations
dc.contributor.authorKeerthi, S.S.
dc.contributor.authorShevade, S.K.
dc.date.accessioned2014-06-17T06:33:46Z
dc.date.available2014-06-17T06:33:46Z
dc.date.issued2003-02
dc.identifier.citationKeerthi, S.S., Shevade, S.K. (2003-02). SMO algorithm for least-squares SVM formulations. Neural Computation 15 (2) : 487-507. ScholarBank@NUS Repository. https://doi.org/10.1162/089976603762553013
dc.identifier.issn08997667
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/61328
dc.description.abstractThis article extends the well-known SMO algorithm of support vector machines (SVMs) to least-squares SVM formulations that include LS-SVM classification, kernel ridge regression, and a particular form of regularized kernel Fisher discriminant. The algorithm is shown to be asymptotically convergent. It is also extremely easy to implement. Computational experiments show that the algorithm is fast and scales efficiently (quadratically) as a function of the number of examples.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1162/089976603762553013
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1162/089976603762553013
dc.description.sourcetitleNeural Computation
dc.description.volume15
dc.description.issue2
dc.description.page487-507
dc.identifier.isiut000180223800011
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.