Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/61087
DC FieldValue
dc.titlePerturbation method for the second-Order nonlinear effect of focused acoustic field around a scatterer in an ideal fluid
dc.contributor.authorLiu, G.
dc.contributor.authorJayathilake, P.G.
dc.contributor.authorKhoo, B.C.
dc.date.accessioned2014-06-17T06:30:53Z
dc.date.available2014-06-17T06:30:53Z
dc.date.issued2014-02
dc.identifier.citationLiu, G., Jayathilake, P.G., Khoo, B.C. (2014-02). Perturbation method for the second-Order nonlinear effect of focused acoustic field around a scatterer in an ideal fluid. Ultrasonics 54 (2) : 576-585. ScholarBank@NUS Repository.
dc.identifier.issn0041624X
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/61087
dc.description.abstractTwo nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects. © 2013 Elsevier B.V. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.ultras.2013.08.011
dc.sourceScopus
dc.subjectMach number
dc.subjectNonlinear acoustic wave
dc.subjectPerturbation method
dc.subjectWestervelt equation
dc.typeArticle
dc.contributor.departmentSINGAPORE-MIT ALLIANCE
dc.contributor.departmentMECHANICAL ENGINEERING
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.description.sourcetitleUltrasonics
dc.description.volume54
dc.description.issue2
dc.description.page576-585
dc.description.codenULTRA
dc.identifier.isiut000326938900018
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.