Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.ijimpeng.2008.01.001
Title: Elastic stress transmission in cellular systems-Analysis of wave propagation
Authors: Shim, V.P.W. 
Guo, Y.B. 
Lan, R.
Keywords: Cellular structures
Dispersion
Elastic wave propagation
Flexural waves
Issue Date: Aug-2008
Citation: Shim, V.P.W., Guo, Y.B., Lan, R. (2008-08). Elastic stress transmission in cellular systems-Analysis of wave propagation. International Journal of Impact Engineering 35 (8) : 845-869. ScholarBank@NUS Repository. https://doi.org/10.1016/j.ijimpeng.2008.01.001
Abstract: A closely packed array of thin-walled rings constitutes an idealisation of a cellular structure. Elastic waves propagating through such structures must do so via the ring (cell) walls. A theoretical investigation into the propagation of elastic stresses in thin-walled circular rings is undertaken to examine the nature of wave transmission. Three modes of motion, corresponding to shear, extensional and flexural waves, are established and their respective velocities defined by a cubic characteristic equation. The results show that all three waves are dispersive. By neglecting extension of the centroidal axis and rotary inertia, explicit approximate solutions can be obtained for flexural waves. Employment of Love's approach for extensional waves [Love AEH. A treatise on the mathematical theory of elasticity, 4th ed. New York: Dover Publications; 1944. p. 452-3] enables approximate solutions for shear waves to be derived. The three resulting approximate solutions exhibit good agreement with the exact solutions of the characteristic equation over a wide range of wavelengths. The effects of material property, ring wall thickness and ring diameter on the three wave modes are discussed, and the results point to flexural waves as the dominant means of elastic energy transmission in such cellular structures. Wave velocities corresponding to different frequency components determined from experimental results are compared with theoretical predictions of group velocity for flexural waves and good correlation between experimental data and theory affirms this conclusion. © 2008 Elsevier Ltd. All rights reserved.
Source Title: International Journal of Impact Engineering
URI: http://scholarbank.nus.edu.sg/handle/10635/60132
ISSN: 0734743X
DOI: 10.1016/j.ijimpeng.2008.01.001
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.