Please use this identifier to cite or link to this item: https://doi.org/10.1162/089976603321891855
DC FieldValue
dc.titleAsymptotic behaviors of support vector machines with gaussian kernel
dc.contributor.authorKeerthi, S.S.
dc.contributor.authorLin, C.-J.
dc.date.accessioned2014-06-17T06:13:15Z
dc.date.available2014-06-17T06:13:15Z
dc.date.issued2003-07
dc.identifier.citationKeerthi, S.S., Lin, C.-J. (2003-07). Asymptotic behaviors of support vector machines with gaussian kernel. Neural Computation 15 (7) : 1667-1689. ScholarBank@NUS Repository. https://doi.org/10.1162/089976603321891855
dc.identifier.issn08997667
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/59589
dc.description.abstractSupport vector machines (SVMs) with the gaussian (RBF) kernel have been popular for practical use. Model selection in this class of SVMs involves two hyperparameters: the penalty parameter C and the kernel width σ. This letter analyzes the behavior of the SVM classifier when these hyperparameters take very small or very large values. Our results help in understanding the hyperparameter space that leads to an efficient heuristic method of searching for hyperparameter values with small generalization errors. The analysis also indicates that if complete model selection using the gaussian kernel has been conducted, there is no need to consider linear SVM.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1162/089976603321891855
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1162/089976603321891855
dc.description.sourcetitleNeural Computation
dc.description.volume15
dc.description.issue7
dc.description.page1667-1689
dc.identifier.isiut000183421400011
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.