Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/58573
Title: On the role of Kelvin-Helmholtz-like instability in the formation of turbulent vortex rings
Authors: Lim, T.T. 
Issue Date: Jul-1997
Citation: Lim, T.T. (1997-07). On the role of Kelvin-Helmholtz-like instability in the formation of turbulent vortex rings. Fluid Dynamics Research 21 (1) : 47-56. ScholarBank@NUS Repository.
Abstract: It is well known that when fluid is ejected at a high Reynolds number through a nozzle, a turbulent vortex ring is formed almost immediately. To date, it remains unclear how turbulence is initiated so quickly into a ring. In a recent study, Glezer [Phys. Fluids A 31 (1988) 3532] noticed that, during the formation of turbulent vortex ring, the cylindrical vortex sheet leaving the nozzle developed a Kelvin-Helmholtz-like instability. He went on to postulate that the disturbance introduced by the instability (henceforth referred to as secondary vortex rings) can accelerate the onset, amplification and breakdown to turbulence of the azimuthal core. But the exact mechanism which brings about the early transition was not fully explained. In this paper, it is shown through a systematic experimental investigation that although Kelvin-Helmholtz-like instability plays an important role in initiating the transition process, it is the leapfrogging phenomenon between the primary and secondary vortex rings which is responsible for hastening the development of azimuthal bending waves. This factor, coupled with the misalignment of the vortex rings during the leapfrogging is instrumental in producing fine-scale structures in the flow thus causing vortex ring to become turbulent. A model showing the process leading to the formation of a turbulent vortex ring is proposed.
Source Title: Fluid Dynamics Research
URI: http://scholarbank.nus.edu.sg/handle/10635/58573
ISSN: 01695983
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.