Please use this identifier to cite or link to this item: https://doi.org/10.1109/TAC.2006.883034
DC FieldValue
dc.titleOn repetitive learning control for periodic tracking tasks
dc.contributor.authorXu, J.-X.
dc.contributor.authorYan, R.
dc.date.accessioned2014-06-17T02:59:43Z
dc.date.available2014-06-17T02:59:43Z
dc.date.issued2006-11
dc.identifier.citationXu, J.-X., Yan, R. (2006-11). On repetitive learning control for periodic tracking tasks. IEEE Transactions on Automatic Control 51 (11) : 1842-1848. ScholarBank@NUS Repository. https://doi.org/10.1109/TAC.2006.883034
dc.identifier.issn00189286
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/56879
dc.description.abstractIn this note, a repetitive learning control (RLC) approach is proposed to deal with periodic tracking tasks for nonlinear dynamical systems with nonparametric uncertainties. We address two fundamental issues associated with the learning control methodology: The existence of the solution, and learning convergence property. Applying the existence theorem of the neutral differential difference equation, and using Lyapunov-Krasovskii functional, the existence of the solution and learning convergence can be proven rigorously. A further extension of the RLC to cascade systems is also explored. © 2006 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/TAC.2006.883034
dc.sourceScopus
dc.subjectLyapunov-Krasovskii functional
dc.subjectNonparametric uncertainties
dc.subjectPeriodic tracking tasks
dc.subjectRepetitive learning control
dc.typeArticle
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1109/TAC.2006.883034
dc.description.sourcetitleIEEE Transactions on Automatic Control
dc.description.volume51
dc.description.issue11
dc.description.page1842-1848
dc.description.codenIETAA
dc.identifier.isiut000242257200014
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.