Please use this identifier to cite or link to this item:
https://doi.org/10.1016/S0005-1098(01)00049-8
DC Field | Value | |
---|---|---|
dc.title | Learning variable structure control approaches for repeatable tracking control tasks | |
dc.contributor.author | Xu, J.-X. | |
dc.contributor.author | Cao, W.-J. | |
dc.date.accessioned | 2014-06-17T02:55:03Z | |
dc.date.available | 2014-06-17T02:55:03Z | |
dc.date.issued | 2001-07 | |
dc.identifier.citation | Xu, J.-X., Cao, W.-J. (2001-07). Learning variable structure control approaches for repeatable tracking control tasks. Automatica 37 (7) : 997-1006. ScholarBank@NUS Repository. https://doi.org/10.1016/S0005-1098(01)00049-8 | |
dc.identifier.issn | 00051098 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/56480 | |
dc.description.abstract | In this paper, we consider repeatable tracking control tasks using a new control approach - learning variable structure control (LVSC). LVSC synthesizes two main control strategies: variable structure control (VSC) as the robust part and learning control as the intelligent part. The incorporation of the powerful learning function, by virtue of the internal model principle, completely nullifies the tracking error. The switching control mechanism on the other hand, retains the well appreciated properties of VSC, especially theinsensitivity to unstructured system uncertainties. Through a rigorous proof based on energy function and functional analysis, we show that the LVSC system achieves the following novel properties: (1) the tracking error sequence converges uniformly to zero; (2) the bounded learning control sequence converges to the equivalent control, i.e. the desired control profile almost everywhere; (3) the system state sequence and VSC control sequence are uniformly continuous. To address important practical considerations, the learning mechanism is implemented by means of Fourier series expansions, hence achieves better tracking performance. © 2001 Elsevier Science Ltd. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0005-1098(01)00049-8 | |
dc.source | Scopus | |
dc.subject | Chattering | |
dc.subject | Continunity | |
dc.subject | Equivalent control | |
dc.subject | Function approximation | |
dc.subject | Learning control | |
dc.subject | Lyapunov methods | |
dc.subject | Sliding mode | |
dc.subject | Variable structure control | |
dc.type | Article | |
dc.contributor.department | ELECTRICAL & COMPUTER ENGINEERING | |
dc.description.doi | 10.1016/S0005-1098(01)00049-8 | |
dc.description.sourcetitle | Automatica | |
dc.description.volume | 37 | |
dc.description.issue | 7 | |
dc.description.page | 997-1006 | |
dc.description.coden | ATCAA | |
dc.identifier.isiut | 000169252300003 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.