Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.automatica.2005.07.003
DC FieldValue
dc.titleFurther result on a dynamic recurrent neural-network-based adaptive observer for a class of nonlinear systems
dc.contributor.authorHuang, S.N.
dc.contributor.authorTan, K.K.
dc.contributor.authorLee, T.H.
dc.date.accessioned2014-06-17T02:50:46Z
dc.date.available2014-06-17T02:50:46Z
dc.date.issued2005-12
dc.identifier.citationHuang, S.N., Tan, K.K., Lee, T.H. (2005-12). Further result on a dynamic recurrent neural-network-based adaptive observer for a class of nonlinear systems. Automatica 41 (12) : 2161-2162. ScholarBank@NUS Repository. https://doi.org/10.1016/j.automatica.2005.07.003
dc.identifier.issn00051098
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/56104
dc.description.abstractIn Kim et al. [(1997) A dynamic recurrent neural-network-based adaptive observer for a class of nonlinear systems. Automatica 33(8), 1539-1543], authors present an excellent neural network (NN) observer for a class of nonlinear systems. However, the output error equation in their paper is strictly positive real (SPR) which is restrictive assumption for nonlinear systems. In this note, by introducing a vector b0 and Lyapunov equation, the observer design is obtained without requiring the SPR condition. Thus, our observer can be applied to a wider class of systems. © 2005 Elsevier Ltd. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.automatica.2005.07.003
dc.sourceScopus
dc.subjectAdaptive control
dc.subjectNeural networks
dc.subjectNonlinear systems
dc.subjectObserver
dc.typeArticle
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1016/j.automatica.2005.07.003
dc.description.sourcetitleAutomatica
dc.description.volume41
dc.description.issue12
dc.description.page2161-2162
dc.description.codenATCAA
dc.identifier.isiut000233227900017
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.