Please use this identifier to cite or link to this item:
https://doi.org/10.1109/TSMCB.2008.2006368
DC Field | Value | |
---|---|---|
dc.title | Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input | |
dc.contributor.author | Ren, B. | |
dc.contributor.author | Ge, S.S. | |
dc.contributor.author | Su, C.-Y. | |
dc.contributor.author | Lee, T.H. | |
dc.date.accessioned | 2014-06-17T02:36:54Z | |
dc.date.available | 2014-06-17T02:36:54Z | |
dc.date.issued | 2009 | |
dc.identifier.citation | Ren, B., Ge, S.S., Su, C.-Y., Lee, T.H. (2009). Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39 (2) : 431-443. ScholarBank@NUS Repository. https://doi.org/10.1109/TSMCB.2008.2006368 | |
dc.identifier.issn | 10834419 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/54909 | |
dc.description.abstract | In this paper, adaptive neural control is investigated for a class of unknown nonlinear systems in pure-feedback form with the generalized Prandtl-Ishlinskii hysteresis input. To deal with the nonaffine problem in face of the nonsmooth characteristics of hysteresis, the mean-value theorem is applied successively, first to the functions in the pure-feedback plant, and then to the hysteresis input function. Unknown uncertainties are compensated for using the function approximation capability of neural networks. The unknown virtual control directions are dealt with by Nussbaum functions. By utilizing Lyapunov synthesis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, and the tracking error converges to a small neighborhood of zero. Simulation results are provided to illustrate the performance of the proposed approach. © 2008 IEEE. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/TSMCB.2008.2006368 | |
dc.source | Scopus | |
dc.subject | Adaptive control | |
dc.subject | Hysteresis | |
dc.subject | Neural networks (NNs) | |
dc.subject | Nonlinear systems | |
dc.subject | Pure-feedback | |
dc.type | Article | |
dc.contributor.department | ELECTRICAL & COMPUTER ENGINEERING | |
dc.description.doi | 10.1109/TSMCB.2008.2006368 | |
dc.description.sourcetitle | IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics | |
dc.description.volume | 39 | |
dc.description.issue | 2 | |
dc.description.page | 431-443 | |
dc.description.coden | ITSCF | |
dc.identifier.isiut | 000264630500011 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.