Please use this identifier to cite or link to this item: https://doi.org/10.1109/81.983875
DC FieldValue
dc.titleAbsolute periodicity and absolute stability of delayed neural networks
dc.contributor.authorYi, Z.
dc.contributor.authorHeng, P.A.
dc.contributor.authorVadakkepat, P.
dc.date.accessioned2014-06-17T02:36:21Z
dc.date.available2014-06-17T02:36:21Z
dc.date.issued2002-02
dc.identifier.citationYi, Z., Heng, P.A., Vadakkepat, P. (2002-02). Absolute periodicity and absolute stability of delayed neural networks. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49 (2) : 256-261. ScholarBank@NUS Repository. https://doi.org/10.1109/81.983875
dc.identifier.issn10577122
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/54860
dc.description.abstractIn this brief, we propose to study the absolute periodicity of delayed neural networks. A neural network is said to be absolutely periodic, if for every activation function in some suitable functional set and every input periodic vector function, a unique periodic solution of the network exists and all other solutions of the network converge exponentially to it. Absolute stability of delayed neural networks is also studied in this paper. Simple and checkable conditions for guaranteeing absolute periodicity and absolute stability are derived. Simulations for absolute periodicity are given.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/81.983875
dc.sourceScopus
dc.subjectAbsolute periodicity
dc.subjectAbsolute stability
dc.subjectDelay
dc.subjectNeural networks
dc.typeArticle
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1109/81.983875
dc.description.sourcetitleIEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications
dc.description.volume49
dc.description.issue2
dc.description.page256-261
dc.description.codenITCAE
dc.identifier.isiut000173858800014
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.