Please use this identifier to cite or link to this item: https://doi.org/10.1089/ten.tea.2011.0376
DC FieldValue
dc.titleA hybrid silk/RADA-based fibrous scaffold with triple hierarchy for ligament regeneration
dc.contributor.authorChen, K.
dc.contributor.authorSahoo, S.
dc.contributor.authorHe, P.
dc.contributor.authorNg, K.S.
dc.contributor.authorToh, S.L.
dc.contributor.authorGoh, J.C.H.
dc.date.accessioned2014-06-16T09:29:28Z
dc.date.available2014-06-16T09:29:28Z
dc.date.issued2012-07-01
dc.identifier.citationChen, K., Sahoo, S., He, P., Ng, K.S., Toh, S.L., Goh, J.C.H. (2012-07-01). A hybrid silk/RADA-based fibrous scaffold with triple hierarchy for ligament regeneration. Tissue Engineering - Part A 18 (13-14) : 1399-1409. ScholarBank@NUS Repository. https://doi.org/10.1089/ten.tea.2011.0376
dc.identifier.issn19373341
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/54282
dc.description.abstractWhile silk-based microfibrous scaffolds possess excellent mechanical properties and have been used for ligament tissue-engineering applications, the microenvironment in these scaffolds is not biomimetic. We hypothesized that coating a hybrid silk scaffold with an extracellular matrix (ECM)-like network of self-assembling peptide nanofibers would provide a biomimetic three-dimensional nanofibrous microenvironment and enhance ligament tissue regeneration after bone marrow-derived mesenchymal stem cell (BMSC)-seeding. A novel scaffold possessing a triple structural hierarchy comprising macrofibrous knitted silk fibers, a silk microsponge, and a peptide nanofiber mesh was developed by coating self-assembled RADA16 peptide nanofibers on a silk microfiber-reinforced-sponge scaffold. Compared with the uncoated control, RADA-coated scaffolds showed enhanced BMSC proliferation, metabolism, and fibroblastic differentiation during the 3 weeks of culture. BMSC-seeded RADA-coated scaffolds showed an increasing temporal expression of key fibroblastic ECM proteins (collagen type I and III, tenascin-C), with a significantly higher tenascin-C expression compared with the controls. BMSC-seeded RADA-coated scaffolds also showed a temporal increase in total collagen and glycosaminoglycan production (the amount produced being higher than in control scaffolds) during 3 weeks of culture, and possessed 7% higher maximum tensile load compared with the BMSC-seeded control scaffolds. The results indicate that the BMSC-seeded RADA-coated hybrid silk scaffold system has the potential for use in ligament tissue-engineering applications. © 2012 Mary Ann Liebert, Inc.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1089/ten.tea.2011.0376
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentBIOENGINEERING
dc.description.doi10.1089/ten.tea.2011.0376
dc.description.sourcetitleTissue Engineering - Part A
dc.description.volume18
dc.description.issue13-14
dc.description.page1399-1409
dc.identifier.isiut000306474000009
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

29
checked on Jul 15, 2019

WEB OF SCIENCETM
Citations

27
checked on Jul 15, 2019

Page view(s)

68
checked on Jul 21, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.