Please use this identifier to cite or link to this item: https://doi.org/10.1016/S1570-7946(09)70175-0
DC FieldValue
dc.titleA Graph Theory Augmented Math Programming Approach to Identify Genetic Targets for Strain Improvement
dc.contributor.authorJonnalagadda, S.
dc.contributor.authorBalagurunathan, B.
dc.contributor.authorDong-Yup, L.
dc.contributor.authorSrinivasan, R.
dc.date.accessioned2014-06-16T09:28:54Z
dc.date.available2014-06-16T09:28:54Z
dc.date.issued2009
dc.identifier.citationJonnalagadda, S.,Balagurunathan, B.,Dong-Yup, L.,Srinivasan, R. (2009). A Graph Theory Augmented Math Programming Approach to Identify Genetic Targets for Strain Improvement. Computer Aided Chemical Engineering 26 : 1051-1055. ScholarBank@NUS Repository. <a href="https://doi.org/10.1016/S1570-7946(09)70175-0" target="_blank">https://doi.org/10.1016/S1570-7946(09)70175-0</a>
dc.identifier.isbn9780444534330
dc.identifier.issn15707946
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/54227
dc.description.abstractImprovement of biological strains through targeted modification of metabolism is essential for successful development of bioprocesses. The computational complexity of optimization procedures routinely used for identifying genetic targets limits their application to genome-scale metabolic networks. In this study, we combined graph theoretic approaches with mixed-integer liner programming (MILP) to reduce the search space and thus reducing computational time. Specifically, we used cut-sets (minimal set of reactions that cuts metabolic networks) as additional constraints to reduce the search space. The efficacy of proposed approach is illustrated by identifying minimal reaction set for Saccharomyces Cerevisiae. © 2009 Elsevier B.V. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S1570-7946(09)70175-0
dc.sourceScopus
dc.subjectCut-sets
dc.subjectMILP
dc.subjectStrain improvement
dc.typeArticle
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.description.doi10.1016/S1570-7946(09)70175-0
dc.description.sourcetitleComputer Aided Chemical Engineering
dc.description.volume26
dc.description.page1051-1055
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.