Please use this identifier to cite or link to this item:
Title: A coordination-based CPG structure for 3D walking control
Authors: Huang, W.
Chew, C.-M. 
Hong, G.-S. 
Keywords: Biological inspired approach
Hierarchical CPG structure
Neural oscillator
Issue Date: Aug-2013
Citation: Huang, W., Chew, C.-M., Hong, G.-S. (2013-08). A coordination-based CPG structure for 3D walking control. Robotica 31 (5) : 777-788. ScholarBank@NUS Repository.
Abstract: SUMMARY In most of our daily motion tasks, the coordination between limbs is very crucial for successful execution of the tasks. In this paper, coordination among oscillators controlling in Cartesian space is studied to control bipedal walking. In our method, phase adjustment among oscillators is considered as one of the key issues to achieve coordination. A new phase adjustment method is proposed. With this method, an oscillator is able to coordinate other oscillators and maintain a desired phase relationship. This property is important for the walking control especially when external perturbations are given. To simplify the relationship between oscillators in a central pattern generator (CPG), a hierarchical CPG structure is adopted, where a main oscillator will be used to adjust other oscillators. In the simulation, the walking motion controlled by the CPG controller converges to a stable pattern even with external perturbations. We have implemented the controller in both the simulation model and real hardware robot. © Cambridge University Press 2013.
Source Title: Robotica
ISSN: 02635747
DOI: 10.1017/S0263574713000076
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Oct 18, 2021


checked on Oct 18, 2021

Page view(s)

checked on Oct 14, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.