Please use this identifier to cite or link to this item: https://doi.org/10.1007/s00466-009-0420-5
DC FieldValue
dc.titleTemporal stabilization of the node-based smoothed finite element method and solution bound of linear elastostatics and vibration problems
dc.contributor.authorZhang, Z.-Q.
dc.contributor.authorLiu, G.R.
dc.date.accessioned2014-04-24T09:37:22Z
dc.date.available2014-04-24T09:37:22Z
dc.date.issued2010-07
dc.identifier.citationZhang, Z.-Q., Liu, G.R. (2010-07). Temporal stabilization of the node-based smoothed finite element method and solution bound of linear elastostatics and vibration problems. Computational Mechanics 46 (2) : 229-246. ScholarBank@NUS Repository. https://doi.org/10.1007/s00466-009-0420-5
dc.identifier.issn01787675
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/51532
dc.description.abstractA stabilization procedure for curing temporal instability of node-based smoothed finite element method (NS-FEM) is proposed for dynamic problems using linear triangular element. A stabilization term is added into the smoothed potential energy functional of the original NS-FEM, consisting of squared-residual of equilibrium equation. A gradient smoothing operation on second order derivatives is applied to relax the requirement of shape function, so that the squared-residual can be evaluated using linear elements. Numerical examples demonstrate that stabilization parameter can "tune" NS-FEM from being "overly soft" to "overly stiff", so that eigenvalue solutions can be stabilized. Numerical tests provide an empirical value range of stabilization parameter,within which the stabilized NS-FEM can still produce upper bound solutions in strain energy to the exact solution of force-driven elastostatics problems, as well as lower bound natural frequencies for free vibration problems. © Springer-Verlag 2009.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s00466-009-0420-5
dc.sourceScopus
dc.subjectFinite element method (FEM)
dc.subjectGradient smoothing
dc.subjectMeshfree methods
dc.subjectNumerical methods
dc.subjectSmoothed finite element method (SFEM)
dc.subjectSolution bound
dc.subjectStability
dc.subjectVibration
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.contributor.departmentSINGAPORE-MIT ALLIANCE
dc.description.doi10.1007/s00466-009-0420-5
dc.description.sourcetitleComputational Mechanics
dc.description.volume46
dc.description.issue2
dc.description.page229-246
dc.description.codenCMMEE
dc.identifier.isiut000277711500003
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.