Please use this identifier to cite or link to this item:
Title: In vitro study of human vascular endothelial cell function on materials with various surface roughness
Authors: Xu, C. 
Yang, F. 
Wang, S. 
Ramakrishna, S. 
Keywords: Electrospinning
Endothelial cells
Poly (L-lactic acid)
Solvent cast
Surface roughness
Issue Date: 1-Oct-2004
Citation: Xu, C., Yang, F., Wang, S., Ramakrishna, S. (2004-10-01). In vitro study of human vascular endothelial cell function on materials with various surface roughness. Journal of Biomedical Materials Research - Part A 71 (1) : 154-161. ScholarBank@NUS Repository.
Abstract: In recent years, creating a biodegradable polymer scaffold with an endothelialized surface has become an attractive concept for replacement of small-diameter blood vessels. Toward this end, a better understanding of the interaction between endothelial cells and biodegradable polymer substrates is particularly important. Surface roughness of biomaterials is one of the important parameters that affect cell behavior. In this study, human vascular endothelial cells were cultured on electrospun and solvent-cast poly(L-lactic acid) substrates with different surface roughness. Cell responses were evaluated via both qualitative examinations of cell morphology changes as well as quantitative assessment of cell adhesion and proliferation rate on the different substrates. The results proved that endothelial cell function was enhanced on the smooth solvent-cast surface rather than on the rough electrospun surface of poly(L-lactic acid). Together with our previous findings that electrospun substrates favor vascular smooth muscle cell behavior, it is possible to design a unique three-dimensional scaffold for application of tissue-engineered small-diameter vessel replacement by combining the fabrication technique of solvent casting and electrospinning. © 2004 Wiley Periodicals, Inc.
Source Title: Journal of Biomedical Materials Research - Part A
ISSN: 00219304
DOI: 10.1002/jbm.a.30143
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Sep 20, 2022


checked on Sep 20, 2022

Page view(s)

checked on Sep 22, 2022

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.