Please use this identifier to cite or link to this item:
https://doi.org/10.1080/14786430902973858
Title: | Finite element simulation and experimental determination of interfacial adhesion properties by wedge indentation | Authors: | Chen, L. Yeap, K.B. Zeng, K.Y. Liu, G.R. |
Keywords: | Adhesion Cohesive zone model Computer simulation Films Finite-element modeling Indentation Interfaces Wedge indentation |
Issue Date: | Jun-2009 | Citation: | Chen, L., Yeap, K.B., Zeng, K.Y., Liu, G.R. (2009-06). Finite element simulation and experimental determination of interfacial adhesion properties by wedge indentation. Philosophical Magazine 89 (17) : 1395-1413. ScholarBank@NUS Repository. https://doi.org/10.1080/14786430902973858 | Abstract: | This paper presents our recent study on determination of interfacial adhesion properties of soft-film-on-hard-substrate (SFHS) systems using finite element simulation (FEM) and wedge indentation experiments. The objectives of this study are: (i) to simulate the interfacial delamination processes during wedge indentation experiments; (ii) to study the effects of interfacial delamination on the characteristics of the indentation load-displacement (P-h) curves, (iii) to determine the interfacial adhesion properties; and (iv) to compare the simulation and experimental results. During the FEM simulation, a traction-separation law is used to describe the interfacial adhesion properties due to the large-scale yielding during indentations. The effects of main parameters in the traction-separation law, i.e. interfacial strength and interfacial energy, to the initiation of interfacial delamination are studied by parametric studies. An interface energy-strength contour, which can be used to determine the interfacial adhesion properties of the thin-film/substrate systems based on a wedge indentation experiment, is developed from the outcomes of the FEM simulation of the indentations using wedge tips with the inclusion angles of 90° and 120°. Using the respective interface energy-strength contours, the interfacial energy and strength of a BlackDiamond® (BD)/Si system and a methylsilsesquioxane (MSQ)/Si system are determined. The simulated results are then compared with the previous experimentally derived interfacial fracture toughness values and some further discussions are given. © 2009 Taylor & Francis. | Source Title: | Philosophical Magazine | URI: | http://scholarbank.nus.edu.sg/handle/10635/51417 | ISSN: | 14786435 | DOI: | 10.1080/14786430902973858 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.