Please use this identifier to cite or link to this item: https://doi.org/10.1088/1748-6041/7/1/015001
DC FieldValue
dc.titleBiomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning
dc.contributor.authorRavichandran, R.
dc.contributor.authorNg, C.C.H.
dc.contributor.authorLiao, S.
dc.contributor.authorPliszka, D.
dc.contributor.authorRaghunath, M.
dc.contributor.authorRamakrishna, S.
dc.contributor.authorChan, C.K.
dc.date.accessioned2014-04-24T09:31:26Z
dc.date.available2014-04-24T09:31:26Z
dc.date.issued2012-02
dc.identifier.citationRavichandran, R., Ng, C.C.H., Liao, S., Pliszka, D., Raghunath, M., Ramakrishna, S., Chan, C.K. (2012-02). Biomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning. Biomedical Materials 7 (1) : -. ScholarBank@NUS Repository. https://doi.org/10.1088/1748-6041/7/1/015001
dc.identifier.issn17486041
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/51344
dc.description.abstractThe time required for osseointegration with a metal implant having a smooth surface ranges from three to six months. We hypothesized that biomimetic coating surfaces with poly(lactic-co-glycolic acid) (PLGA)/collagen fibers and nano-hydroxyapatite (n-HA) on the implant would enhance the adhesion of mesenchymal stem cells. Therefore, this surface modification of dental and bone implants might enhance the process of osseointegration. In this study, we coated PLGA or PLGA/collagen (50:50 w/w ratio) fiber on Ti disks by modified electrospinning for 5 s to 2 min; after that, we further deposited n-HA on the fibers. PLGA fibers of fiber diameter 0.957 ± 0.357 μm had a contact angle of 9.9 ± 0.3° and PLGA/collagen fibers of fiber diameter 0.378 ± 0.068 μm had a contact angle of 0°. Upon n-HA incorporation, all the fibers had a contact angle of 0° owing to the hydrophilic nature of n-HA biomolecule. The cell attachment efficiency was tested on all the scaffolds for different intervals of time (10, 20, 30 and 60 min). The alkaline phosphatase activity, cell proliferation and mineralization were analyzed on all the implant surfaces on days 7, 14 and 21. Results of the cell adhesion study indicated that the cell adhesion was maximum on the implant surface coated with PLGA/collagen fibers deposited with n-HA compared to the other scaffolds. Within a short span of 60 min, 75% of the cells adhered onto the mineralized PLGA/collagen fibers. Similarly by day 21, the rate of cell proliferation was significantly higher (p ≤ 0.05) on the mineralized PLGA/collagen fibers owing to enhanced cell adhesion on these fibers. This enhanced initial cell adhesion favored higher cell proliferation, differentiation and mineralization on the implant surface coated with mineralized PLGA/collagen fibers. © 2012 IOP Publishing Ltd.
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentNUS NANOSCIENCE & NANOTECH INITIATIVE
dc.contributor.departmentRESTORATIVE DENTISTRY
dc.contributor.departmentORTHOPAEDIC SURGERY
dc.contributor.departmentBIOENGINEERING
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1088/1748-6041/7/1/015001
dc.description.sourcetitleBiomedical Materials
dc.description.volume7
dc.description.issue1
dc.description.page-
dc.identifier.isiut000300011900005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.