Please use this identifier to cite or link to this item: https://doi.org/10.1109/TNN.2006.880582
DC FieldValue
dc.titleEstimating the number of hidden neurons in a feedforward network using the singular value decomposition
dc.contributor.authorTeoh, E.J.
dc.contributor.authorTan, K.C.
dc.contributor.authorXiang, C.
dc.date.accessioned2014-04-24T07:21:09Z
dc.date.available2014-04-24T07:21:09Z
dc.date.issued2006-11
dc.identifier.citationTeoh, E.J., Tan, K.C., Xiang, C. (2006-11). Estimating the number of hidden neurons in a feedforward network using the singular value decomposition. IEEE Transactions on Neural Networks 17 (6) : 1623-1629. ScholarBank@NUS Repository. https://doi.org/10.1109/TNN.2006.880582
dc.identifier.issn10459227
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/50917
dc.description.abstractIn this letter, we attempt to quantify the significance of increasing the number of neurons in the hidden layer of a feedforward neural network architecture using the singular value decomposition (SVD). Through this, we extend some well-known properties of the SVD in evaluating the generalizability of single hidden layer feedforward networks (SLFNs) with respect to the number of hidden layer neurons. The generalization capability of the SLFN is measured by the degree of linear independency of the patterns in hidden layer space, which can be indirectly quantified from the singular values obtained from the SVD, in a postlearning step. A pruning/growing technique based on these singular values is then used to estimate the necessary number of neurons in the hidden layer. More importantly, we describe in detail properties of the SVD in determining the structure of a neural network particularly with respect to the robustness of the selected model. © 2006 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/TNN.2006.880582
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1109/TNN.2006.880582
dc.description.sourcetitleIEEE Transactions on Neural Networks
dc.description.volume17
dc.description.issue6
dc.description.page1623-1629
dc.description.codenITNNE
dc.identifier.isiut000241933100023
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.