Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.neucom.2007.06.006
DC FieldValue
dc.titleAn asynchronous recurrent linear threshold network approach to solving the traveling salesman problem
dc.contributor.authorTeoh, E.J.
dc.contributor.authorTan, K.C.
dc.contributor.authorTang, H.J.
dc.contributor.authorXiang, C.
dc.contributor.authorGoh, C.K.
dc.date.accessioned2014-04-24T07:19:35Z
dc.date.available2014-04-24T07:19:35Z
dc.date.issued2008-03
dc.identifier.citationTeoh, E.J., Tan, K.C., Tang, H.J., Xiang, C., Goh, C.K. (2008-03). An asynchronous recurrent linear threshold network approach to solving the traveling salesman problem. Neurocomputing 71 (7-9) : 1359-1372. ScholarBank@NUS Repository. https://doi.org/10.1016/j.neucom.2007.06.006
dc.identifier.issn09252312
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/50862
dc.description.abstractIn this paper, an approach to solving the classical Traveling Salesman Problem (TSP) using a recurrent network of linear threshold (LT) neurons is proposed. It maps the classical TSP onto a single-layered recurrent neural network by embedding the constraints of the problem directly into the dynamics of the network. The proposed method differs from the classical Hopfield network in the update of state dynamics as well as the use of network activation function. Furthermore, parameter settings for the proposed network are obtained using a genetic algorithm, which ensure a stable convergence of the network for different problems. Simulation results illustrate that the proposed network performs better than the classical Hopfield network for optimization. © 2007 Elsevier B.V. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.neucom.2007.06.006
dc.sourceScopus
dc.subjectGenetic algorithms
dc.subjectHopfield model
dc.subjectLinear threshold neurons
dc.subjectRecurrent neural networks
dc.subjectTraveling salesman problem
dc.typeArticle
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1016/j.neucom.2007.06.006
dc.description.sourcetitleNeurocomputing
dc.description.volume71
dc.description.issue7-9
dc.description.page1359-1372
dc.description.codenNRCGE
dc.identifier.isiut000255239200023
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.