Please use this identifier to cite or link to this item:
https://doi.org/10.1016/j.neucom.2007.06.006
DC Field | Value | |
---|---|---|
dc.title | An asynchronous recurrent linear threshold network approach to solving the traveling salesman problem | |
dc.contributor.author | Teoh, E.J. | |
dc.contributor.author | Tan, K.C. | |
dc.contributor.author | Tang, H.J. | |
dc.contributor.author | Xiang, C. | |
dc.contributor.author | Goh, C.K. | |
dc.date.accessioned | 2014-04-24T07:19:35Z | |
dc.date.available | 2014-04-24T07:19:35Z | |
dc.date.issued | 2008-03 | |
dc.identifier.citation | Teoh, E.J., Tan, K.C., Tang, H.J., Xiang, C., Goh, C.K. (2008-03). An asynchronous recurrent linear threshold network approach to solving the traveling salesman problem. Neurocomputing 71 (7-9) : 1359-1372. ScholarBank@NUS Repository. https://doi.org/10.1016/j.neucom.2007.06.006 | |
dc.identifier.issn | 09252312 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/50862 | |
dc.description.abstract | In this paper, an approach to solving the classical Traveling Salesman Problem (TSP) using a recurrent network of linear threshold (LT) neurons is proposed. It maps the classical TSP onto a single-layered recurrent neural network by embedding the constraints of the problem directly into the dynamics of the network. The proposed method differs from the classical Hopfield network in the update of state dynamics as well as the use of network activation function. Furthermore, parameter settings for the proposed network are obtained using a genetic algorithm, which ensure a stable convergence of the network for different problems. Simulation results illustrate that the proposed network performs better than the classical Hopfield network for optimization. © 2007 Elsevier B.V. All rights reserved. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.neucom.2007.06.006 | |
dc.source | Scopus | |
dc.subject | Genetic algorithms | |
dc.subject | Hopfield model | |
dc.subject | Linear threshold neurons | |
dc.subject | Recurrent neural networks | |
dc.subject | Traveling salesman problem | |
dc.type | Article | |
dc.contributor.department | ELECTRICAL & COMPUTER ENGINEERING | |
dc.description.doi | 10.1016/j.neucom.2007.06.006 | |
dc.description.sourcetitle | Neurocomputing | |
dc.description.volume | 71 | |
dc.description.issue | 7-9 | |
dc.description.page | 1359-1372 | |
dc.description.coden | NRCGE | |
dc.identifier.isiut | 000255239200023 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.