Please use this identifier to cite or link to this item: https://doi.org/10.1088/0965-0393/14/8/005
DC FieldValue
dc.titleImproved algorithm for material characterization by simulated indentation tests
dc.contributor.authorSwaddiwudhipong, S.
dc.contributor.authorHua, J.
dc.contributor.authorHarsono, E.
dc.contributor.authorLiu, Z.S.
dc.contributor.authorOoi, N.S.B.
dc.date.accessioned2014-04-23T07:08:25Z
dc.date.available2014-04-23T07:08:25Z
dc.date.issued2006-12-01
dc.identifier.citationSwaddiwudhipong, S., Hua, J., Harsono, E., Liu, Z.S., Ooi, N.S.B. (2006-12-01). Improved algorithm for material characterization by simulated indentation tests. Modelling and Simulation in Materials Science and Engineering 14 (8) : 1347-1362. ScholarBank@NUS Repository. https://doi.org/10.1088/0965-0393/14/8/005
dc.identifier.issn09650393
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/50705
dc.description.abstractThe paper involves the establishment of a neural network model with improved algorithm for reverse analysis of simulated indentation tests considering the effects of friction on the contact surfaces. Extensive finite element analyses covering a wide practical range of materials obeying power law strain-hardening have been carried out to simulate the indentation tests. The results obtained from the simulated dual indentations using conical indenters with different geometries considering effects of friction are adopted in the training and verification of the least squares support vector machines involving structural risk optimization. The characteristics and performances of the neural network model for this class of problems are given and deliberated. The tuned networks are able to predict accurately the mechanical properties of a new set of materials. The approach has great potential for the applications on the characterization of a small volume of materials in micro-and nano-electromechanical systems (MEMS & NEMS). © 2006 IOP Publishing Ltd.
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentCIVIL ENGINEERING
dc.contributor.departmentINST OF HIGH PERFORMANCE COMPUTING
dc.description.doi10.1088/0965-0393/14/8/005
dc.description.sourcetitleModelling and Simulation in Materials Science and Engineering
dc.description.volume14
dc.description.issue8
dc.description.page1347-1362
dc.description.codenMSMEE
dc.identifier.isiut000243635500005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.